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Birzeit University
Mathematics Department

Math3331
H.W#3 (Chapter 3)

Instructor: Dr. Ala Talahmeh Second Semester 2019/2020
Name:................................................. Date: 27/04/2020

Exercise#1 [10 marks]. Let E ⊆ R. A function f : E → R is called Lipschitz if there exists a constant
α > 0 such that

|f(x)− f(y)| ≤ α|x− y|,

for all x, y ∈ E.

a. Give two examples of Lipschitz functions.

b. Prove that every Lipschitz function is uniformly continuous.

c. Let g : [0, 1]→ R, g(x) =
√
x. Prove that g is uniformly continuous but not Lipschitz.

Exercise#2 [5 marks]. Let f : E → R. Let a ∈ E such that lim
x→a

f(x) exists. Show that lim
x→a
|f(x)| exists

and the following identity holds:
lim
x→a
|f(x)| = | lim

x→a
f(x)|.

Exercise#3 [5 marks]. Let I := [a, b] and let f : I → R be a continuous function on I such that
for each x ∈ I there exists y ∈ I such that |f(x)| > 2|f(y)|. Prove there exists a point c ∈ I such that
f(c) = 0.

Exercise#4 [5 marks]. Using (ε− δ) definition of limit show that

lim
x→−1

x+ 5

2x+ 3
= 4.

Exercise#5 [10 marks].

a. Let a be a real number such that a > 0. Show that the function f : [a,+∞)→ R, f(x) = 1
x

is uniformly
continuous.

b. Show that if f and g : E → R are uniformly continuous and bounded, then fg is uniformly continuous.
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Exercise#6 [10 marks]. Let a and b two real numbers such that a < b and f : [a, b]→ [a, b].

a. Suppose that for every x, y ∈ [a, b] : |f(x) − f(y)| ≤ |x − y|. Show that f is continuous. Deduce that
there exists c ∈ [a, b] such that f(c) = c.

b. Suppose that for every x, y such that x 6= y we have|f(x)− f(y)| < |x− y|. Show that there exists one
and only one c ∈ [a, b] such that f(c) = c.

Exercise#7 [15 marks]. Let f : R → R be a continuous function such that f(x + y) = f(x) + f(y),
∀x, y ∈ R.
a. Compute f(0) and show that f(−x) = −f(x).

b. Prove that for every x ∈ R and n ∈ Z : f(nx) = nf(x).

c. Prove that for every x ∈ R and q rational: f(qx) = qf(x).

d. Prove that for every x ∈ R and λ real: f(λx) = λf(x).

e. Find f(x).

Good Luck
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Birzeit University
Mathematics Department

Math3331
Quiz I&II

Instructor: Dr. Ala Talahmeh Time: 20 minutes
Second Semester 2019/2020 Date: 05/03/2020
Name:................................................. Number:...............

Exercise#1 [5 points].

a) Find all real numbers x that satisfy the inequality x2 > 1
x
.

b) Show that

max{α, β} = α + β + |α− β|
2

, ∀ α, β ∈ R.

Exercise#2 [5 points]. Let

E =
{
r| r is a rational and r2 < 2

}
.

Show that E has no rational supremum.
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Exercise#3 [5+5 points]. Let A and B be bounded nonempty subsets of R.
a) Show that A ∪B is bounded.

b) Prove that sup
(
A ∪B

)
= max

{
supA, supB

}
.

Good Luck
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Birzeit University
Mathematics Department

Math3331
H.W#2

Instructor: Dr. Ala Talahmeh Second Semester 2019/2020
Name:................................................. Date: 06/04/2020

Exercise#1 [10 points].

a. Use the definition of a limit to prove:

lim
n→∞

3n+ 1

2n+ 5
=

3

2
.

b. Show that the sequence defined by

xn =
1

3
sin
(
n3 − 1

n

)
− 3 cos

( 1

n
− n3

)
has a convergent subsequence.

Exercise#2 [10 points]. We say that a sequence {xn} of real numbers is contractive if ∃ a constant
C > 0, 0 < C < 1, such that

|xn+1 − xn| ≤ C|xn − xn−1|

for all n ∈ N. Answer the following:

a. Show that every contractive sequence is convergent.

b. Let {xn} be a sequence defined by

x1 > 0, xn+1 =
1

2 + xn
for n ≥ 1.

Show that {xn} is a contractive sequence. Find the limit.

Exercise#3 [10 points].

a. Show that the sequence {xn} defined by

xn =

∫ n

1

cos t

t2
dt

is Cauchy.

b. Let 0 < β < 1 and x1, x2 be two real numbers such that x1 < x2 and

xn = (1− β)xn−1 + βxn−2 for n > 2.

Show that the sequence {xn} is convergent. What its limit?
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Exercise#4 [10 points]. Let
{
In = [an, bn] : n ∈ N

}
be a sequence of closed bounded intervals in R,

that is nested. If α = sup{an : n ∈ N} and β = inf{bn : n ∈ N}, show that⋂
n≥1

[an, bn] = [α, β].

Exercise#5 [15 points]. Let {xn} be a sequence of real numbers defined by

x0 =
3

2
, xn+1 = (xn − 1)2 + 1.

a. Prove that for each n ∈ N, 1 < xn < 2.

b. Prove that the sequence {xn} is strictly monotone.

c. Deduce that {xn} is convergent and compute its limit.

Exercise#6 [15 points]. Let {xn} be a bounded sequence of real numbers. Let us define

yn = sup{xk : k ≥ n} and zn = inf{xk : k ≥ n}.
a. Show that the sequence {yn} is decreasing and {zn} is increasing.

b. Deduce that {yn} and {zn} are convergent sequences.

c. Prove that the sequence {xn} is convergent if and only if lim
n→∞

yn = lim
n→∞

zn.

Good Luck
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Birzeit University
Mathematics Department

Math3331
H.W#3 (Chapter 3)

Instructor: Dr. Ala Talahmeh Second Semester 2019/2020
Name:................................................. Date: 27/04/2020

Exercise#1 [10 marks]. Let E ⊆ R. A function f : E → R is called Lipschitz if there exists a constant
α > 0 such that

|f(x)− f(y)| ≤ α|x− y|,

for all x, y ∈ E.

a. Give two examples of Lipschitz functions.

b. Prove that every Lipschitz function is uniformly continuous.

c. Let g : [0, 1]→ R, g(x) =
√
x. Prove that g is uniformly continuous but not Lipschitz.

Exercise#2 [5 marks]. Let f : E → R. Let a ∈ E such that lim
x→a

f(x) exists. Show that lim
x→a
|f(x)| exists

and the following identity holds:
lim
x→a
|f(x)| = | lim

x→a
f(x)|.

Exercise#3 [5 marks]. Let I := [a, b] and let f : I → R be a continuous function on I such that
for each x ∈ I there exists y ∈ I such that |f(x)| > 2|f(y)|. Prove there exists a point c ∈ I such that
f(c) = 0.

Exercise#4 [5 marks]. Using (ε− δ) definition of limit show that

lim
x→−1

x+ 5

2x+ 3
= 4.

Exercise#5 [10 marks].

a. Let a be a real number such that a > 0. Show that the function f : [a,+∞)→ R, f(x) = 1
x

is uniformly
continuous.

b. Show that if f and g : E → R are uniformly continuous and bounded, then fg is uniformly continuous.
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Exercise#6 [10 marks]. Let a and b two real numbers such that a < b and f : [a, b]→ [a, b].

a. Suppose that for every x, y ∈ [a, b] : |f(x) − f(y)| ≤ |x − y|. Show that f is continuous. Deduce that
there exists c ∈ [a, b] such that f(c) = c.

b. Suppose that for every x, y such that x 6= y we have|f(x)− f(y)| < |x− y|. Show that there exists one
and only one c ∈ [a, b] such that f(c) = c.

Exercise#7 [15 marks]. Let f : R → R be a continuous function such that f(x + y) = f(x) + f(y),
∀x, y ∈ R.
a. Compute f(0) and show that f(−x) = −f(x).

b. Prove that for every x ∈ R and n ∈ Z : f(nx) = nf(x).

c. Prove that for every x ∈ R and q rational: f(qx) = qf(x).

d. Prove that for every x ∈ R and λ real: f(λx) = λf(x).

e. Find f(x).

Good Luck
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Math3331
H.W#4 (Chapter 4)

Instructor: Dr. Ala Talahmeh Second Semester 2019/2020
Name:................................................. Date: 09/05/2020

Exercise#1 [10 marks]. Let f : R→ R be such that

|f(x)− f(y)| ≤ | sinx− sin y|,
for all x, y ∈ R.
a. Show that f is 2π−periodic ( A function f is 2π−periodic if ∀x ∈ R, f(x+ 2π) = f(x)).

b. Show that f is continuous.

c. Show that f is differentiable at π
2

and compute f ′(π
2
).

Exercise#2 [5 marks]. Prove that for x > 1,

x− 1

x
< lnx < x− 1.

Exercise#3 [5 marks]. Let g : R→ R be a positive function such that g(0) = 1 and g(x+y) = g(x)g(y),
∀x, y ∈ R. Show that if g is continuous at x = 0, then g is continuous at every point of R.

Exercise#4 [5 marks]. Let f : [a, b]→ R be a continuous function such that f is differentiable on (a, b).
Assume that f(x) > 0, for every x ∈ [a, b]. Show that there exists c ∈ (a, b) such that

f(b)

f(c)
= exp

(
(b− a)

f ′(c)

f(c)

)
.

Exercise#5 [5 marks]. Prove that if the function f : I → R has a bounded derivative on I, then f is
uniformly continuous on I. Is the converse true? Justify.

Exercise#6 [5 marks]. Show that the equation ex = 1 − x has exactly one solution in R. Find this
solution.

Exercise#7 [5 marks]. Let f : R→ R. Assume that for any x, y ∈ R, we have

|f(x)− f(y)| ≤ |x− y|1+α,
where α > 0. Show that f is constant.

Exercise#8 [10 marks]. Let f : [0,∞)→ R be differentiable everywhere. Assume that

lim
x→∞

(
f(x) + f ′(x)

)
= 0.

Show that lim
x→∞

f(x) = 0.

Good Luck
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Instructor: Dr. Ala Talahmeh Second Semester 2019/2020
Name:................................................. Date: 19/05/2020

Exercise#1 [10 marks]. Is the function

f(x) =

{
1, x 6= 1

0, x = 1.

integrable over the interval [0, 2]? Justify.

Exercise#2 [5 marks]. Show that if f is Riemann integrable on [a, b], then it is bounded. What about
the converse? Justify.

Exercise#3 [10 marks].

(a) Suppose that a > 0 and that f is Riemann integrable on [−a, a]. If f is even show that∫ a

−a

f(x)dx = 2

∫ a

0

f(x)dx.

(b) Let f be a continuous function on [a, b]. Show that there exists c ∈ (a, b) such that

f(c) =
1

b− a

∫ b

a

f(x)dx.

Good Luck
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